According to Nocera, the oxygen evolving half of the reaction is the most difficult – and one of the unique things about his catalyst is that it works under ambient conditions.
‘That’s really different and special,’ he says. ‘Nobody’s been able to make an inexpensive catalyst that operates efficiently in an open glass of water. And that means it’s at pH 7, at ambient pressure and room temperature – that’s how photosynthesis works.’
Although the exact mechanism is unknown, Nocera thinks positively charged cobalt ions must pull electrons from the hydrogen atoms of water molecules, releasing oxygen in the process. Impressively, oxygen is formed at a rate rivalling that of photosynthesis. But according to Nocera, the most exciting thing about the catalyst is its ability to self-repair, which is analogous to that of the leaf.
‘In photosynthesis, the leaf repairs every half an hour,’ he explains. ‘It takes out the subunit that the oxygen evolving complex is in and makes a whole new protein that it inserts. And this catalyst is doing it better than the leaf – if cobalt falls out of the catalyst, then it gets oxidised and the phosphate brings it back to the electrode.’
The only downside is that the electricity needed to generate the cobalt ions, which are formed when a current is run through an electrode in the solution, still comes from fossil fuels through a socket in the wall. ‘This catalyst doesn’t work unless we find the main material, that light absorbing material which is driven by some kind of energy,’ Turner points out. ‘You can shine light on this catalyst and nothing happens.’