
Originally Posted by
choc
kakuti ba d i ani sis...gesubay man jud sa pamalaud..dugay napud ko la kagunit og libro,papel og bpen...
ambot tama ba ni...
legend: []=absolute sign
1. (x^2-1)/(x+1) = -2
(x+1)(x-1)/(x+1) = -2
x-1 = -2 ;
[x+2 = 0]
[x+2] = 0 ; consider the positive limit , thus E>0;
mao nga [x+2] < E
considering the Delta, using the limit x--> -2
x = -2
x + 2 = 0 , delta should be positive so delta>0
[x+2] < delta
compare ang E and delta;
[x+2]<E ; [x+2]<delta
[x+2]<E=delta
mao nga delta =(1/k)E , where k is a constant and in this case k is equal to 1...
.....hehehe..ambot tama ba ni, mao dili nalang nako esuwat ang no.2 kay basin mali ra japun og basin malibog rakag samot, kapoy2 type.
nalipat ka.
legend: []=absolute sign
1. (x^2-1)/(x+1) = -2
(x+1)(x-1)/(x+1) = -2
x-1 = -2 ;
[x-1+2 = 0]
[x+1] = 0 ; consider the positive limit , thus E>0;
basta x+1= 0 ky x= -1

Originally Posted by
emjee17
^ i mean, amo mang gud answers kay ingon ani:
given example:
1. show that lim (4x-5) = 3
x--> 2
Proof: let E(epsilon) > 0.
Observe that: |(4x-5) - 3| = |4x-8|
= |4(x-2)|
= |4| |x-2|
Take d(delta)=E/4. Then, for all x E IR(all real nos.), such that
0<|x-2|<d, then
|(4x-5) - 3| = |4x-8|
= |4(x-2)|
= |4| |x-2|
< 4d = 4 E/4
Thus, |(4x-5) - 3| < E.
Therefore, by definition lim (4x-5) = 3.
x-->2
**ingon ani pag present sa among maestrong pwerting pagka paspasa mu discuss. tsk3.
ga lisod lisod rmn inyo teacher uy, hehe.
1. show thatlim x^2-1/x+1 = -2
x--> -1
2. prove thatlim (7-3x) = -2
x-->3
Observe that: |(x^2-1) / (x+1) +2 | = | (x+1) (x-1) / (x+1) +2 |
= |(x-1) + 2 |
= | x-1+2 |
= |1| | x +1 |
Take d(delta)=E/1. Then, for all x E IR(all real nos.), such that
0<|x+1|<d, then
| (x+1) (x-1) / (x+1) + 2 | = | x-1 + 2|
= |1 (x+1)|
= |1| |x+1|
< 1d = 1 E/1
Thus, |(x^2-1) / (x+1) + 2 | < E.
Therefore, by definition lim (x^2-1)/(x+1) = -2.
x--> -1
haha, ambot lang sad bitaw. wa kayo ko kasabot sa delta and epsilon.

Originally Posted by
choc
1.) (x+1)(x-1)/(x+1) = -2
x-1- = -2
-1-1 = -2
2.) 7-3(3) = -2
7 - 9 = -2
^ kani man gud pinakasayon. substitute lang ba.