Brian explains that his team starts its analysis with a baseline, which is whatever the processor requires in its stock form (for a Gulftown-based chip, for example, that’s 130 watts), to determine the number of phases required just for that. Then, if the board is being groomed for the enthusiast market as some of Intel’s recent platforms have been, the team tries to figure out how far it can be pushed.
“Many times, based on the tuning of the circuitry and our component selection, we’ve been able to get upwards of 210 amps using six or eight phases,” Brian said. “Granted, that requires passive cooling with minimal airflow, which typically comes from your processor’s fan.” During that discussion, it was mentioned that, especially with the unlocked K-series and Extreme Edition parts, the team at Hawthorn Farm has to hit a point where the processor simply cannot run any faster and gets damaged—without affecting the motherboard. Despite what we’ve been programmed to believe, Intel claims that is possible to take an unlocked chip to its breaking point with six- or eight-phase power.
Then Brian got provocative. “When I look at these 12-, 14-, 18-, 24-phase boards, in many instances, it appears those designs are trying to compensate for some type of an engineering ‘gotcha’, where if I throw a little bit more at this, I should be able to get more power. And that might be true for a period. But when you start to get to extreme phases where you need those 24 phases operating in harmony…we haven’t seen it done. We’re using FLIR cameras to capture the thermal effects on each and every device. And what we’ve found 99% of the time is that the board is operating and we’re watching components degrading rapidly over a year or six months, where the thermal limits of those parts get exceeded.”
Now, that’s a significant challenge to the rest of the motherboard industry, which would have us believe that more phases are correspondingly better. Of course, without the measurement equipment Intel uses in its labs, it’s difficult to validate the power delivery of an eight-phase design compared to larger voltage regulation circuits. However, Brian reiterated over and over that his six- or eight-phase design delivers more power than anyone is able to exert on the motherboard, and it does so in a symmetrical way, whereas larger VRs tend to lack balance, causing certain switches to handle a majority of the load and heat up unevenly.